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Intuition and previous results suggest that a peristaltic wave tends to drive the mean 
flow in the direction of wave propagation. New theoretical results indicate that, when 
the viscosity of the transported fluid is shear-dependent, the direction of mean flow can 
oppose the direction of wave propagation even in the presence of a zero or favourable 
mean pressure gradient. The theory is based on an analysis of lubrication-type flow 
through an infinitely long, axisymmetric tube subjected to a periodic train of transverse 
waves. Sample calculations for a shear-thinning fluid illustrate that, for a given 
waveform, the sense of the mean flow can depend on the rheology of the fluid, and that 
the mean flow rate need not increase monotonically with wave speed and occlusion. We 
also show that, in the absence of a mean pressure gradient, positive mean flow is 
assured only for Newtonian fluids ; any deviation from Newtonian behaviour allows 
one to find at least one non-trivial waveform for which the mean flow rate is zero or 
negative. Introduction of a class of waves dominated by long, straight sections 
facilitates the proof of this result and provides a simple tool for understanding viscous 
effects in peristaltic pumping. 

1. Introduction 
1.1. Purpose 

Peristaltic pumping is the transport of fluid by a wave of contraction and/or expansion 
propagating along the walls of a tube or channel. The motion of the walls traditionally 
has been understood to be primarily transverse to the long axis of the conduit. The 
mean flow rate produced by such a device depends on the shape and speed of the wave, 
the properties of the fluid, and the pressure difference across which the pump is 
operating. Despite these complexities, it seems intuitively clear that a peristaltic wave 
should tend to drive the mean flow in the direction of wave propagation. To our 
knowledge, no previous theoretical or experimental findings dispute this notion. 

In this paper we present theoretical results indicating that a transverse peristaltic 
wave moving in one direction can drive the mean flow in the opposite direction. (This 
phenomenon is not to be confused with reflux, which refers to the negative mean axial 
velocities of individual fluid elements.) The theory is based on an analysis of 
lubrication-type flow through an infinitely long, axisymmetric tube subjected to a 
periodic train of transverse waves. We make two assumptions regarding the constitutive 
behaviour of the transported fluid: the shear stress depends only on the shear rate, and 
non-Newtonian normal stresses arc negligible. 

t Author to whom correspondence should be addressed. 
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Sample calculations in $2 for a shear-thinning fluid demonstrate the following: the 
direction of mean flow can oppose the direction of wave propagation even in the 
presence of a mean pressure gradient that favours positive flow; for a given waveform, 
the sense of the mean flow can depend on the rheology of the fluid; and the mean flow 
rate need not increase monotonically with wave speed and occlusion. In 93,  a more 
general lubication-based analysis reveals that, in the absence of a mean pressure 
gradient, positive mean flow is assured for all waveforms only when the fluid is 
Newtonian over the entire range of permissible shear rates. In other words, if the 
transported fluid exhibits any deviations from Newtonian behaviour, one can find at 
least one non-trivial waveform for which the mean flow rate is zero or negative. 
Introduction of a class of waves dominated by long, straight sections facilitates the 
proof of this result and provides a simple tool for understanding viscous effects in 
peristaltic pumping. 

1.2. Related work 
Early theoretical work on peristaltic transport, notably that of Fung & Yih (1968), was 
concerned primarily with inertia-free, Newtonian flows driven by sinusoidal transverse 
waves of small amplitude. Shapiro, Jaffrin & Weinberg (1969) were among the first to 
present closed-form solutions for waves of long wavelength and arbitrary amplitude. 
They also derived conditions for the presence of closed streamlines, called trapping, 
and negative mean Lagrangian axial velocities of individual fluid elements, known as 
reflux. Jaffrin & Shapiro (1971) have summarized the early literature. Much subsequent 
work has been devoted to relaxing the original assumptions regarding flow geometry 
and the properties of the transported fluid. Numerical investigations by Brown & Hung 
(1977), Pozrikidis (1987), and Takabatake, Ayukawa & Mori (1988), among others, 
have revealed the effects of fluid inertia and wall curvature and alignment on peristaltic 
flow patterns and pumping characteristics. 

Brasseur, Corrsin & Lu (1987) considered the influence of a distinct, Newtonian 
peripheral fluid layer in connection with pumping in physiological systems. The 
complex rheology of biological and physiological flows has also motivated a number 
of studies involving non-Newtonian fluids. The power-law model was used by Raju & 
Devanathan (1972), Picologlou, Pate1 & Lykoudis (1 973), and Shukla & Gupta (1 982) 
to investigate shear-thinning and shear-thickening effects. Becker (1980) presented an 
analysis, based on a geometry equivalent to one wavelength of the SSD wave 
introduced in $3.1, for fluids with shear-dependent viscosity and computed pumping 
characteristics for a Prandtl-Eyring fluid. Raju & Devanathan (1974) and Bohme & 
Friedrich (1983) probed the effects of viscoelasticity. Siddiqui, Provost & Schwarz 
(1991) used the second-order fluid model to study the effects of normal stresses in slow 
non-Newtonian flows. 

The present work follows in the tradition of Shapiro, Jaffrin & Weinberg (1969) and 
others who have sought to understand viscous effects in peristalsis by analysing 
Newtonian and non-Newtonian flows in the lubrication limit. In contrast with these 
earlier works, however, our main conclusions are not based on a particular constitutive 
model. Rather, they apply to all fluids with shear-dependent viscosity, subject to the 
assumptions discussed in 9 1.4. 

1.3. Basic concepts and terminology 
Peristaltic flow is inherently unsteady in a frame of reference that is fixed in space. 
However, when a spatially periodic peristaltic wave propagates axially at a constant 
speed along an infinitely long tube, the flow is steady in a frame of reference that 
translates along with the wave (Shapiro et al. 1969). The fixed and moving frames of 
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reference are called the laboratory frame and the wave frame, respectively. For 
quantities that depend upon the frame of reference, capital and lower-case letters 
denote values relative to the laboratory frame and the wave frame, respectively. The 
axial coordinates in the two frames transform as z = Z -  ct, where c is the wave speed, 
and t is time. Axial velocities are related by u = U-c .  In each frame of reference, 
velocities (and hence flow rates) are defined to be positive in the direction in which the 
axial coordinate ( z  or 2)  increases. The wave speed is positive by convention. 

Integration of zi over a cross-section of the tube yields the relationship between the 
volumetric flow rates in the wave and laboratory frames, 

q = Q - A c ,  (1) 

where A = A(z}  is the cross-sectional area of the tube. Solving (1) for Q and averaging 
over one period gives the time-mean flow rate in the laboratory frame, 

Q = q+Ac, 

where the overbar denotes an average over one period of the wave. (we note here for 
future reference that, for any quantity G, 

A 

G = - G{z)~z,  
- :i (3) 

that is, the time mean over one period in the laboratory frame is equal to the spatial 
average over one wavelength, A, in the wave frame.) Elimination of q between (I)  and 
(2) yields 

Q = Q+c(A-J) .  (4) 

As a rule, the flow rate generated by a peristaltic device is a function of the mean 
pressure gradient against which it operates. For a periodic wave of wavelength A, the 
mean pressure gradient is AP,/A, where AP, denotes the pressure change over one 
wavelength. The terms adverse and Juvourable are used to describe positive and 
negative pressure gradients, respectively. Free pumping refers to the case A 4  =O (or, 
equivalently, AP,/h = 0), while positive Jree pumping implies additionally that Q > 0. 
Note that positive flow rates are, by definition, in the direction of wave propagation. 
Throughout the remainder of the paper, all references to flows and flow rates will refer 
to the laboratory frame, unless specified otherwise. 

1.4. Main assumptions 
The results presented in this work pertain to peristaltic transport of fluid through an 
infinitely long, axisymmetric tube by a periodic transverse wave of vanishingly small 
slope. We assume that the flow is free of inertial effects and that non-Newtonian 
normal stresses are negligible. Under these conditions, the governing equations, 
expressed here in cylindrical coordinates (r,  z ) ,  are similar to those found in lubrication 
theory. In general, the constitutive behaviour of the transported fluid is specified by 
relating the shear stress 7,, to the deformation history. Because the flow through any 
given cross-section is essentially viscometric, we assume that the shear stress is a 
function of the shear rate only, 

where K = au/ar. Implicit in ( 5 )  is the assumption that fluid memory effects are 
negligible. We further assume thatf’is a continuously differentiable, strictly increasing 

7,z = f (4, ( 5 )  
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(and therefore invertible) function with a bounded first derivative, and (following 
Coleman, Markovitz & No11 1966) that it is an odd function that takes the same sign 
as its argument. 

1.5. Lubrication analysis 
Under the assumptions of the previous section, the momentum equation in cylindrical 
coordinates (r, z) reduces to 

d P  1 a 
- = - -(rTrz). 
dz r c?r 

Coleman, Markovitz & No11 (1966) solved (6), with the constitutive relation (5) ,  within 
the context of steady, viscometric, Poiseuille flow. Their analysis is applicable to the 
present problem and is reproduced below with appropriate 

Substituting ( 5 )  into (6) and integrating, we get 

The wave-frame flow rate is given by 

q = 2n; ru{r}dr, 1:: 
where h{z} = ( A { z } / K ) ” ~  is the tube radius. Integrating (8) 
frame boundary condition u = - c  at r = h{z}, we find 

q = -cA-n; r2-dr. l:: : 
Substituting (7) into (9) and invoking (I), we obtain the 
laboratory-frame flow rate and the pressure gradient at any 
tube, 

modifications. 

(8) 

by parts, with the wave- 

(9) 

relationship between the 
given cross-section of the 

For a given stress function f { K } ,  one could, in principle, solve (10) for dP/dz. 
Substitution of (4) into the resulting expression and integration over one wavelength 
would then produce the pumping characteristic, APJh versus Q. 

1.6. Typical pumping performance 
The lubrication solution of Shapiro et al. (1969) exhibits several features common to 
all peristaltic pumping characteristics observed to date. It applies to a transverse 
sinusoidal wave of small slope transporting a Newtonian fluid of viscosity p through 
an axisymmetric tube in the limit of zero Reynolds number, and takes the form 

where the tube radius is given by 

h{z} = a + b sin {2xz/h} (12) 
in the wave frame, and $ = b/a is called the occlusion number (or amplitude ratio). For 
finite a, $ = 0 corresponds to no peristalsis, while q5 = 1 results in full occlusion, that 
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FIGURE 1. Pumping characteristics for a Newtonian fluid in the lubrication limit 
(Shapiro et al. 1969). 

is, the tube is completely ‘pinched off’ at intervals of one wavelength. Pumping 
characteristics for several occlusions are shown in figure 1. 

During free pumping ( A 4  = 0), the mean flow is attributable solely to the motion 
of the peristaltic wave. When Q = 1, fluid is trapped between points of complete 
occlusion, and the mean flow is in the direction of wave propagation (Q > 0). If the 
occlusion is relaxed to some q5 < 1, the fluid is no longer completely trapped and 
‘leaks’ backward through the contractions, resulting in a diminished mean flow rate. 
In the limit Q = 0, the peristaltic wave vanishes, and Q = 0. Setting AP, = 0 in (1 l), we 
see that, during free pumping, the mean flow rate is positive for all occlusions and 
increases monotonically with Q (except in the trivial case c = 0). In fact, one can show 
that Q increases monotonically with Q even when APh ?= 0. 

If the occlusion is fixed at some value Q < 1, imposition of an adverse mean pressure 
gradient (AP,/h > 0) reduces the mean flow rate relative to the value obtained during 
free pumping. When APA/A is large enough, it balances exactly the driving force for 
flow produced by the wave, and the mean flow rate is zero. We emphasize that, 
according to (1 l), the value of the mean pressure gradient at which Q = 0 is always 
positive (except in the trivial case c = 0). 

The properties of the pumping characteristic (1 1) can be summarized as follows : (i) 
the mean flow rate increases monotonically with occlusion, and (ii) the pumping 
characteristic, APJh versus Q, has a negative slope and positive intercepts; it passes 
through the first quadrant of the (Q, AP’/h) plane. 

As far as we are aware, the properties listed above hold true for all peristaltic 
pumping characteristics that have appeared in the literature to date. Even when the 
effects of wall slope, non-sinusoidal wave shapes, fluid inertia, and non-Newtonian 
fluid rheology have been taken into account, pumping characteristics have never been 
observed to pass through the third quadrant, and the mean flow rate has never been 
seen to decrease with increasing occlusion. In the following section we present an 
example of pumping performance that differs significantly from previously observed 
behaviour. 
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2. Pumping performance for a shear-thinning fluid 
2.1. Description of the model 

When the constitutive behaviour of shear-thinning (pseudoplastic) fluids in viscometric 
flows is examined over a wide range of shear rates, the apparent viscosity, defined by 

V ~ K )  r r z / K  = f { ~ l / ~ ,  (13) 

is often found to approach limiting values qo and 7* (where qm < 7") as K + O  and 
K + co , respectively. The Reiner-Philippoff model, 

where r, is a third empirical parameter, exhibits this limiting behaviour and has been 
used to fit rheological data for a number of fluids. In the examples that follow, we use 
the nominal values qo = 21.5 cp, 7, = 1.05 cp, and r, = 0.073 dyn cm-', which 
represent a fit to data taken for molten sulphur at 120 "C at shear stresses below 
10 dyn cm-' (Bird, Stewart & Lightfoot 1960) and are typical of shear-thinning fluids. 

For a fluid described by (14), (10) reduces to 

where h d P  
27, dz a=--, 7 r  = ?lo/?lCu. 

Given a wave shape, h{z} (or Aiz}), and speed, c, one can compute numerically the 
pumping characteristic, APh versus Q, as follows : (i) Choose a value of Q;  (ii) discretize 
the z-domain, then for each discrete value of z compute Q using (4) and solve (15) 
iteratively to get dP/dz; (iii) integrate dP/dz numerically over one wavelength to 
obtain APh. (It should be noted that since Q is an invertible function of dP/dz (see 
proof of Lemma 4, Appendix, each value of Q corresponds to a unique value of dP/dz, 
for a given fluid and fixed A .  Thus, the root computed in step (ii) of the numerical 
procedure is unique.) 

The shape of the peristaltic wave used in the sample calculations is given by 

a + h cos (2nz/A,) (0 < z < A,), { a+b (A, < z < A), 
h{z} = 

and is depicted in figure 2 with a = 0.9 cm, b = 0.1 cm, and A,/A = 0.2. The axial 
dimension. z ,  appears scaled by the wavelength, A, because, from the standpoint of 
lubrication theory, A is arbitrary to the extent that it is large enough so that the effects 
of wall slope can be neglected. 

2.2. Eflects of shear-dependent viscosity 
The solid curve in figure 3 represents the pumping characteristic for peristaltic 
transport of a Reiner-Philippoff fluid with yo = 21.5 cp, rm = 1.05 cp, and 
r, = 0.073 dyn/cm2 by the waveform shown in figure 2. The dashed lines correspond 
to Newtonian fluids with viscosities of q0 and vm.  In all three cases the wave speed is 
50 cm s-'. 

When the fluid is shear-thinning (solid curve), the pumping characteristic passes 
through the third quadrant of the ((7, AP,/h) plane; negative flow rates are achievable 
even for favourable mean pressure gradients. This is not the case when the fluid is 
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FIGURE 3. Pumping characteristics for the waveform in figure 2 transporting Newtonian and 
Reiner-Philippoff fluids. Note that negative free pumping occurs when the fluid is shear-thinning. 

Newtonian. It is interesting to note that although the apparent viscosity of the 
Reiner-Philippoff fluid is bounded by the limiting values yo and T ~ ,  the solid curve in 
figure 3 is not bounded by the dashed lines. This illustrates the fact that negative free 
pumping is not simply the result of an ‘overall’ reduction in viscosity; the distribution 
of apparent viscosities throughout the tube is clearly of major importance. 

2.3. Dependence of meanflow on wave speed 
During free pumping, the peristaltic wave supplies the only driving force for fluid 
motion, and Q = 0 when c = 0. As the wave speed is increased from zero, one might 
expect the mean flow rate to increase, as it does in figure 4 for Newtonian fluids (dashed 
line). This is, in fact, the case at values of c that are too small to be resolved in figure 
4. However, in the previous section we demonstrated that, when the fluid is non- 
Newtonian, it is possible to have Q = 0 when c > 0. In such a case, Q must decrease 
with increasing c over some range of wave speeds. In fact, Q can pass through a 
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FIGURE 4. Variation of mean flow rate with wave speed for the waveform in figure 2 transporting 
Newtonian and Reiner-Philippoff fluids with AP, = 0. 
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FIGURE 5. Variation of mean flow rate with occlusion for the waveform in figure 2 transporting 

Newtonian and Reiner-Philippoff fluids with AP, = 0. 

minimum value, as illustrated by the solid curve in figure 4. (As far as we know, Bohme 
& Friedrich 1983 are the only other workers to have observed a non-monotonic 
variation of the mean flow rate with wave speed. Their analysis of a small-amplitude 
wave pumping a second-order viscoelastic fluid uncovered a maximum in the mean 
flow rate, which they attributed to fluid memory effects.) 
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2.4. Dependence of mean jow on occlusion 
The sinusoidal wave described by (12) has emerged as a prototype in the peristaltic 
literature. For this wave shape, the occlusion number, 4,  is defined as the ratio of the 
maximum wave amplitude, b, to the average tube radius, a. Extension of this definition 
to other waveforms can proceed in a number of ways. For the present purposes, 
q5 = b/a should suffice as a measure of the degree to which the composite wave defined 
in (16) is occluded. The parameters a and b will be adjusted such that the volume 
enclosed by the wave remains constant as Q is varied. 

Consider again the case of free pumping. When 4 = 0, the tube does not deform, and 
Q = 0. When Q = 1, the tube is completely closed off at intervals of one wavelength, 
and Q > 0. Figure 5 shows the dependence of Q on 4 in the range of low occlusion. 
For Newtonian fluids (dashed curve), the mean flow rate increases steadily with 
occlusion, as expected (4 1.6). However, in the case of the shear-thinning fluid (solid 
curve), the mean flow rate immediately becomes negative when the occlusion is first 
increased from zero. As $ is increased further, Q reaches a negative minimum value, 
then increases steadily towards its positive limiting value at full occlusion. 

3. Mathematical treatment of free pumping 
3.1. The straight-section-dominated (SSD)  wave model 

Before moving on to general arguments concerning the effects of wave shape and fluid 
properties on pumping performance, we pause here to describe the basic viscous 
mechanism responsible for peristaltic pumping and to introduce a special type of wave 
that will be useful in the subsequent analysis. To construct such a wave, one begins with 
two sections of tubing, one of length AT,, the other of length AT2, and each of radius 
h,  at one end and h,  at the other end, where h, < h,. The changes in radius should occur 
gradually enough so that the lubrication approximation can be applied to flow through 
these sections. One then connects the narrow ends of these two sections with a long, 
straight section of radius h, and length, A,,. much greater than A,, and AT,. Next, one 
appends to one of the free ends a long, straight section of radius h, and length, A,, also 
much greater than A,, and AT2.  Finally, this assembly of four sections, shown in figure 
6, is used as the repeating unit in an infinite train of peristaltic waves. This waveform 
is related closely to the ‘sliding cuff’ model introduced by Shapiro et al. (1969) and 
later used by Becker (1980). 

If A, and A, are large enough compared with A,, and AT2, the contributions of the 
short, transition sections to the mean flow and mean pressure gradient become 
negligible compared to the contributions from the main, straight sections (see Lemma 
4, Appendix). Thus, for the purpose of determining pumping characteristics, only the 
straight sections are important. Accordingly, we will refer to such waves as straight- 
section-dominated (SSD) waves. It must be stressed that SSD waves are constructed 
such that changes in radius occur gradually over the length of each transition section, 
so that lubrication theory is applicable. 

T h s  simple SSD wave can be used to gain insight into the physics of free pumping 
(A< = Oj. Let the contracted and expanded straight sections have cross-sectional areas 
A ,  and A,, respectively, where A ,  > A , .  Figure 6 depicts such a wave translating from 
left to right. We will refer to the transition sections as contracting or expanding 
transitions, depending on whether they bring about a decrease or an increase in cross- 
sectional area, respectively, as they pass an observer fixed in the laboratory frame. 

Consider a cylindrical volume element of differential length, dZ, whose axial 
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FIGURE 6. Sketch used to define a straight-section-dominated (SSD) wave. 

Sign of Ql Sign of Q, Relative magnitudes 

(-1 (-1 lQi l> I Q J  
(+ I  (+> lQ i l<  I Q Z l  
(-) (+) IQil’ IQJ 
(-) ( + I  IQil < IQJ 

TABLE 1. Signs and relative magnitudes of Q ,  and Q, consistent with the influxes and outflows 
associated with contracting and expanding transitions 

position is fixed in the laboratory frame and whose radius corresponds to the tube 
radius. As a contracting transition passes by, the volume of the element, A{Z)dZ, 
decreases. For an incompressible fluid, mass conservation demands that the reduction 
in volume be accompanied by a net flow of fluid out of the element. Thus, a net efflux 
of fluid is associated with a contracting transition. Similarly, a net influx of fluid is 
associated with an expanding transition. Let Q, and Q2 denote the flow rates through 
the contracted and expanded (straight) sections, respectively. Table 1 shows the 
possible ways in which the signs and magnitudes of Q,  and Q, can combine to create 
the required influxes and outflows. 

The net pressure change over one wavelength is given by 

(17) 

where A, and A, are the lengths of the contracted and expanded sections, respectively. 
In the case of free pumping, (17) implies that the pressure gradients in the contracted 
and expanded sections must be of opposite sign (except in the trivial case where 
dP/dz = 0 in both sections). Equation (lo), together with the assumption that the 
stress function takes the same sign as its argument (5 1.4), then implies that the flow 
rates Q, and Q, induced by these pressure gradients are also of opposite sign. Table 1 
indicates that Q, < 0 and Q2 > 0. 

The mean flow rate is 
Q = (4 Q, + A, Q J / A  (18) 

where A = A, +A2 is the total wavelength. With A& = 0, (17) and (18) can be combined 
to yield 

where 
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The quantity 52 can be considered a resistance to fluid flow per unit length of tube. 
Since A, A,, and Q, are all positive, (19) implies that the sense of the mean flow 

depends on whether 0, is greater than, equal to, or less than 52,. Specifically, 52, > Q,, 
0, = Q,, and 0, <: 52, correspond to Q <  0, Q = 0, and Q > 0, respectively. 

The following picture of free pumping by an SSD wave emerges. The expanding and 
contracting transitions draw in and expel fluid, respectively, inducing negative flow in 
the contracted sections and positive flow in the expanded sections of the tube. The 
mean flow rate is a weighted sum of these positive and negative flows. Its sign depends 
on which straight sections (contracted or expanded) pose the lesser resistance to flow 
per unit length of tube. 

For a Newtonian fluid of viscosity p, (10) reduces to Poiseuille's law, 

Comparison of (21) and (20) shows that Qi = 8 z p / A f .  Thus, for a given viscosity, 52, 
is always larger for a smaller cross-section than for a larger cross-section. It follows 
from (19) that, for a Newtonian fluid driven by an SSD wave, free pumping always 
results in positive mean flow. 

The remainder of the paper is devoted to exploring the conditions under which 
peristalsis fails to generate a positive mean flow despite the absence of an adverse mean 
pressure gradient. In the next section, we formalize the arguments presented above and 
generalize them to allow for arbitrary wave shapes. 

3.2. A theorem regarding the direction of meanJow 
The analysis that follows is concerned with non-trivial waveforms, for which 
A(z) + constant, and A{z)  > 0 for all z.  Intermediate results of major importance appear 
in the main text as Lemmas 1-3. These are supplemented by Lemmas 4 1 0  in the 
Appendix. 

3.2.1. Properties of 52 

to flow per unit length of tube, 0, defined by 
The arguments of the previous section highlighted the importance of the resistance 

in determining the sense of the mean flow. Throughout the remainder of this paper, we 
will refer to 52 simply as the resistance to flow. 

Equation (10) implies that, for a given fluid, dP/dz is a function only of Q and A .  
By (22), 0 must also be a function only of Q and A .  However, (4) indicates that 
Q = Q{A{z);  A, c, Q}. Therefore, we can write 52 = Q{A, Q> = SZ{A{z); A, c, Q}. Since A, 
c, and Q do not vary with position and time, the z-dependence of SZ enters through A(z}  
alone. In the analysis that follows, we will often abbreviate the functional form of D 
to Q{A{z)} to focus attention on the z-dependence. 

3.2.2. Pumping characteristic in terms of 52 

one wavelength, we get 
Equating the right-hand sides of (4) and (22), solving for dP/dz, and integrating over 

A 4  = -[[Q+c(A-A)]Qdz. (23) 
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Rearrangement of (23) yields an equation for the time-mean flow rate in terms of the 
resistance to flow: 

4 
Z }  - X] Q(A{z)  ; X, C ,  Q} dz -7, 

A52 A52 

where = n{2, c, Q). 

3.2.3. Resistance inversion in negative free pumping 
For negative free pumping to be possible, (24) with APA = 0 must have a solution 

Q < 0 for some choice of A{z)  and c. Assume that such a solution exists. Since 52 is 
always positive (Lemma 5), a is positive. It follows from (24) that 

Let Qyin be the minimum value of D over all z for which A{z) < A. Suppose there 
does not exist a value of z for which A{z} > 2 and Q{A{z)) > Dyin. Then 
[A{z)-A] 52(A{z)) < [A{z}  -XI Qyin for all z ,  and 

~[A{z)-A]Q{A{z))dz < s: [A{z)-A]dz. 

However, by the definition of A, 

1 [A{z) - 21 dz = 0. 

The result of substituting (27) into (26) contradicts condition (25). Therefore, for (25) 
to be satisfied, there must exist cross-sections of area A ,  < 2 and A ,  > A such that 
D{A,) > Q{A,} .  As foreshadowed ing3.1, negative free pumping requires an ‘inversion’ 
of resistances; some cross-section must pose less resistance to flow than some larger 
cross-section. This result implies the following : 

LEMMA 1. With APA = 0, i fQ{A, ,  Q,} < Q{A,,  Q,} for  all A ,  < A,, Q,, and Q,, then 
Q 3 0 for  all waveforms. 

3.2.4. Resistance equality in zero free pumping 
With A 4  = 0 and Q = 0, (24) reduces to 

1 [A{z) - X,O{A{z)) dz = 0. 

Following logic analogous to that used to derive Lemma 1, we conclude that if there 
does not exist a z for which A{z} > 2 and D{A(z}} 9 Qyin, then 

[[A(zj-alRja(li)dz < 0. 

Similarly, if there does not exist a z for which A{z} > A and D{A{z}) ,< !2yux, where 
Dyax is the maximum value of Q over all z for which A{z) < 2 ,  then 

1 [A{zj - A] Q{A{z)}  dz > 0. 
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Therefore, if (28) is to be satisfied, there must exist at least one cross-section or area 
A ,  > A  such that D{A,) > L 2 , . l l n ,  and at least one of area A, > A  such that 
52{A,) 6 D~". By Lemma 6, D is a continuous function of A .  Since A{z) is also 
continuous, it follows that D(A,} = D{A,> for some A, > A , .  Thus, equality of 
resistances for cross-sections of different areas is a necessary condition for free 
pumping to result in Q = 0 for some waveform. Next, we show that it is also a sufficient 
condition. 

Recall that for a given fluid D = 521 A ,  Q],  and suppose that SZ{A,, Q,} = O{A,, Q,} 
for some A ,  -=c A,,  Q,, and Q?. (Since, by Lemma 7, Q{A, - Q} = D{A, Q}, we may 
assume without loss of generality that Q, < 0 and Q, > 0.) This supposition implies 
that Q, and Q ,  are permissible flow rates for areas A ,  and A , ,  respectively, that is, 
the inherent limitations of the model are not exceeded by these flows. It follows 
from Lemma 8 that, with A& = 0, one can construct an SSD wave for which the 
resistances to flow in the contracted and expanded sections are equal. Furthermore, the 
arguments of $3.1 show that for an SSD wave 52, = 52, implies Q = 0. Thus, if 
52{A,, Q,} = SZ{A,, Q,} for some A ,  < A,, Q,, and Qr,  then there exists a waveform (at 
the very least, an SSD wave) for which Q = 0. 

Combining the results of this subsection, we find that having QA,, Q,} = SZ(A,, Q,> 
for some A ,  < A,,  Ql, and Q, is necessary and sufficient for free pumping to result in 
zero net flow for at least one wave motion, described by A{z} and c. Equivalently, 
Q =k 0 for all waveforms if and only if SZ{A,, Q,} =k D{A,, Q,} for all A ,  < A,, Q1, and 
Q2. With the help of Lemma 9, we can write 

LEMMA 2. With A 4  = 0 ,  Q $: 0 jor all wavejorms ifand onlv if D depends only on A. 

3.2.5. Resistance inequality and positizje fiee pumping 

If Q > 0 for all waveforms, it follows trivially that p + 0, which, by Lemma 2, 
implies that D depends only on A .  Conversely, if 52 depends only on A,  then: (i) by 
Lemma 2, Q + 0. and (ii) by the Corollary to Lemma 9, SZ{A,, Q,} < O(A,, Q,] for all 
A ,  < A,,  Q,, and Q,, which, according to Lemma 1 ,  implies that Q > 0, and so (iii) 
Q > 0 for all waveforms. We have just proven the following: 

LEMMA 3.  With APA = 0, Q > 0.for all wLzvejorms i f  and only i f Q  depends only on A. 

3.2.6. Constitutive behauiour and positive free puntping 

Lemma 3 provides a condition, expressed in terms of 8, that is necessary and 
sufficient to ensure that all (non-trivial) waveforms give rise to positive pumping. To 
make this result more useful, we relate the condition on Q to a condition on the 
constitutive behaviour of the transported fluid, which is characterized by the stress 
function f { ~ >  defined in (5). 

Dividing (10) through by -dP/dz and recalling the definition of SZ, we get 

where K = 1/Q, y = dP/dz, and, as before, h = [A/IT)'~' .  Clearly, B depends on A 
alone if and only if K depends on h alone. Suppose that K = Kfh) .  Differentiation of 
(32) gives K'(h) = hy- l (khy) /y ,  which implies directly thatf-'(;ry)/y depends only on 
Y. Conversely, iff-'{;ry)/y depends only on r ,  then it follows trivially from (32) that K 
depends on h alone. We conclude that D depends on A alone if and only iff-l(;ry}/y 
depends only on r ,  which, in turn, is true if and only if the fluid is Newtonian (Lemma 
10). Combination of this result with Lemma 3 leads to our main conclusion: 
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FREE PUMPING THEOREM (FPT). With Aph = 0, Q > 0 for all waueforms if and only 

4. Discussion 
4.1. Signijicance and limitations of the free pumping theorem 

According to the FPT, free pumping of a Newtonian fluid under the conditions of Q 1.4 
results in positive mean flow for all (non-trivial) waveforms. The same conclusion can 
be reached using Lemma 3. Recall from $3.1 that D = 87c,u/A2 for a Newtonian fluid 
of viscosity p. Clearly, 0 depends solely on A ,  which implies that Q > 0 for all 
waveforms. 

Perhaps the more significant aspect of the FPT is its assertion that when A 4  = 0, 
Q > 0 for all waveforms only if the fluid is Newtonian. In other words, any shear- 
thinning or shear-thickening behaviour embodied in the stress function f { K }  would 
allow Q < 0 for at least one waveform. 

In $3.2 we introduced the idea of ‘permissible’ flow rates in recognition of the fact 
that the range of validity of our peristaltic model is necessarily limited by its underlying 
assumptions and by the finite range of shear stresses over which the constitutive 
behaviour of the fluid is characterized. Accordingly, the set of ‘all waveforms’ referred 
to in the FPT must be restricted to include only those waveforms that do not result in 
a breach of the inherent limitations of the lubrication analysis. Similarly, non- 
Newtonian fluid rheology leads to non-positive pumping for at least one waveform 
only if this is not precluded by a breakdown of the model. 

4.2. Mechanism for  ‘inverting’ resistances 
In $3.1 we showed that for the simple SSD wave, the sense of the mean flow during free 
pumping depends on the ratio of the resistances to flow in the contracted and expanded 
sections, D, and O,, respectively. In particular, negative free pumping results when 
Q2 > 0,, which never occurs if the transported fluid is Newtonian. In the discussion 
that follows, we explain how such an inversion of resistances can occur when the 
viscosity of the fluid is shear-dependent. We use the example in 52.1 to demonstrate 
that the conclusions drawn from our analysis of SSD waves can provide a qualitative 
understanding of peristaltic transport by other waveforms. 

Although the waveform defined by (16) and shown in figure 2 is not an SSD wave, 
it conforms to the assumption of small wall slope when h is sufficiently large, and can 
be thought of as having a section that is, on average, ‘contracted’. The remainder of 
the wavelength is considered to be ‘expanded’. For the purpose of this discussion. we 
define the contracted section to be the interval in which A(z} < A. For the wave in 
figure 2, this corresponds approximately to 0.020 < z /h  < 0.180. 

Let us focus our attention on the intersection of the solid curve with the horizontal 
axis in figure 3. This point corresponds to negative free pumping of a shear-thinning 
fluid by the waveform in figure 2. Figure 7 shows the axial variation of A ,  Q, ( r ) ,  and 
0, where the angle brackets denote a cross-sectional average. Open and solid circles 
indicate the average values of these quantities in the contracted and expanded sections, 
respectively. (The peak values of ( T I )  and 0, which are off-scale in figures 7(c) and 
7 ( d ) ,  are finite and correspond to Q = 0.) 

In the contracted section, the average cross-sectional area is, of course, less than in 
the expanded section. For a Newtonian fluid, this would result in a higher average 
resistance in the contracted section than in the expanded section. However, with the 
shear-thinning fluid, the average resistance in the contracted section falls below that in 
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FIGURE 7. Axial profiles of (a) area, A,  (6) flow rate, Q ,  (c)  cross-sectionally averaged 7, and ( d )  
resistance, 52, during negative free pumping. Circles, 0 and a, denote averages in the contracted and 
expanded sections, respectively. 
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the expanded section, as shown in figure 7(d). This can occur because the resistance is 
a function of both A and Q. The flow through a given cross-section is dominated by 
successively higher shear rates as the magnitude of Q is increased, resulting in 
successively lower apparent viscosities, which in turn decreases the resistance to flow. 
Thus, a low resistance can be achieved in a small cross-section by inducing a large flow 
rate (either positive or negative). This is, in fact, what occurs in this example. The large, 
negative flow rates in the contracted section (figure 7 h )  produce values of (7) that 
approach v o  = 1.05 cp (figure 7 c). The shear-thinning effect is sufficient to bring about 
an inversion of average resistances between the contracted and expanded sections 
(figure 7 4 .  

4.3. Importance qf wave shape 
To our knowledge, the present work is the first to identify negative mean flow in the 
presence of a zero or favourable mean pressure gradient. We believe that this effect has 
been overlooked in previous work primarily because of the wave shapes required to 
bring it about. Ironically, for a shear-thinning fluid, these shapes resemble those found 
in commercial roller pumps in that the sections of reduced cross-sectional area are 
short compared to the total wavelength. 

For the sake of simplicity, consider an SSD wave. For a shear-thinning fluid, 
equality of resistances is induced by having a large flow rate (high shear) in the 
contracted sections compared to that in the expanded sections, as discussed in $4.2. 
Now, zero mean flow implies that A, Q ,  +A,  Q, = 0. If Q, < 0 is to be much larger in 
magnitude than Q, > 0, then A, 4 A,; the contracted sections must be significantly 
shorter than the expanded sections. (One would expect the situation for negative mean 
flow to be even more extreme.) The waveform used to demonstrate negative free 
pumping in $2, though not an SSD wave, conforms qualitatively to this requirement. 
For a shear-thickening fluid, analogous reasoning suggests that the contracted sections 
must be significantly longer than the expanded sections. Thus, it is likely that previous 
investigators did not consider waves of sufficiently skewed shape to induce zero or 
negative free pumping. Interestingly, Becker (1 980) computed characteristics for 
transport of a Prandtl-Eyring fluid by an SSD wave in a regime that yields negative 
free pumping. (Although the analysis was performed for a single wave in a tube of finite 
length, the results are applicable to one wavelength of an infinite train of waves.) 
However, the author was interested only in the flow induced in the uncontracted 
sections of the pipe, Q2, which is necessarily positive when APA = 0 (Q3.1), and did not 
compute the mean flow rate, Q. 

The authors acknowledge the support of the National Science Foundation under 
grant no. EET8722316. 

Appendix 
In this section we sketch derivations of several ancillary results referred to in the 

main text. 

LEMMA 4. Consider the waveform inJigure 6. WA, and A, are large enough compared 
with A,, and AT,, the contributions of the short, transition sections to the pumping 
characteristic are negligible. 

For the waveform pictured in figure 6, the mean flow rate is 
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where T indicates that the integration is to be performed over both transition sections, 
whose combined length is A, = A,, + hT2. Now, application of (4) to two points, z and 
z,, and elimination of Q yields 

Q = Q,+c(A-AJ, (A 2) 
where quantities evaluated at z are written without subscripts, and z ,  is in straight 
section 1. Substitution of (A 2) into the integral term in (A l), and recognition that 
A 2 A,, where A ,  is the minimum cross-sectional area, gives 

JT Q dz 3 442, + 4 4  - 4 1 .  

JTQdz h,[Q,+e(AAVT-AZ)l, (A 4) 

(A 3) 

Similarly, one can show that 

where A,vT is the maximum cross-sectional area (assumed to be finite). Using (A 3 )  and 
(A 4) in (A l), we obtain 

- s s D  AT Q + [Q, + c(A, -A, ) ]  < Q < e""" +h [Q,  + c(A,  - A,)], (A 5 )  A 

(A 6) 
1 

where QssD (A, Q, + A, Q,). 

Given the assumptions made in 4 1.4 regarding the stress function, j ;  one can deduce 
from (10) that Q is a continuously differentiable, strictly decreasing (and therefore 
invertible) function of y = dP/dz, and that aQ/ay is bounded. Using this information, 
one can employ the same reasoning as above to show that 

where 

Now, if one increases A, and A, so that A, % A ,  and A, % A,, it follows from (A 5 )  
and (A 7) that the mean flow rate and mean pressure gradient are dominated by the 
contributions from the straight sections, provided Q, and Q, do not go to zero during 
this limiting process. (If Q, and Q, were allowed to vanish in (A +(A Sj, it can be 
shown that one would be left with Q = 0 and AP,/h = 0. However, since one is always 
free to specify either Q or APA/h when posing the pumping problem, this restriction is 
physically unrealistic. Therefore, Q, and Q, do not vanish.) 

LEMMA 5. D is always positice 

Recall that the functionf{K} in ( 5 )  takes the same sign as its argument K .  Clearly, 
then, j-'([} also takes the same sign as its argument 5. Therefore, the sign of the 
integrand in (10) is the same as that of dP/dz (except possibly at r = 0), and is constant 
throughout the entire range of integration. It follows that Q and dP/dz are of opposite 
sign, and D > 0. 

LEMMA 6.  For fixed dP/dz, D is a continuous, strictly decreasing junction o j  A .  
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Since the limits of integration in (10) are continuous in A ,  Q can vary discontinuously 
with A only if the integrand (specifically, the function f-') contains a singularity. Since, 
by assumption, no such singularity exists (5  1.4), Q is continuous in A for fixed dP/dz. 
It follows directly that 52 is continuous in A for fixed dP/dz. 

Now, let y = dP/dz. Differentiation of (10) with respect to A gives 

Then 

Recall that f - ' { ( }  takes the same sign as its argument. Assuming h > 0, it follows from 
(A 10) that (aL?/c?A), < 0. Thus, 52 is a strictly decreasing function of A .  

LEMMA 7. Forfixed A ,  i2 is an even function of Q. 

Since f {K)  is an odd function of its argument, so is f - ' { t } .  Thus, changing the sign 
of dP/dz simply changes the sign, but not the magnitude, of the integrand in (10). As 
a result, changing the sign of dP/dz changes only the sign of Q. It follows from the 
definition of SZ that Q{A, -Q} = Q{A, Q].  

LEMMA 8. Let Q, < 0 and Q,  > 0 bepermissibleflow rates for cross-sectional areas A ,  
and A,, respectively. One can construct an SSD wave with contructed area A ,  and 
expanded area A ,  such that during free pumping (9, and Q, are realized in the contracted 
and expanded sections of the tube, respectively. 

Let y = dP/dz. As mentioned in the proof of Lemma 4, Q is an invertible function 
of y, and aQ/ay is continuous, negative, and bounded. Thus, for fixed A ,  we may write 
y = g(Q}, where dg/dQ is continuous, negative, and bounded. For a given SSD wave, 
with APA = 0, (17) then leads to 

A d Q i l  +g{Q2) = 0, (A 11) 

where A = AJA, > 0. Writing (1) for the contracted and expanded sections of the tube 
and eliminating q, we obtain 

- Q i + Q z  = c(A,-Ai), (A 12) 

where A, > A ,  by convention. Equations (A 11) and (A 12) define a transformation 
from the space of points (Q,, Q,) to the space of points (c, A). One can show that, for 
all non-trivial SSD waves, the Jacobian of this transformation does not vanish. Thus, 
each point (Q,, Q,) is associated with a unique pair (c, A). (Furthermore, if Q, < 0 and 
Q, > 0, then c > 0 and A > 0.) This implies that we may induce any permissible values 
of Q, < 0 and Q, > 0 by choosing c and A,/& appropriately. It follows that any flow 
rates Q, < 0 and Q, > 0 that are permissible for cross-sectional areas A ,  and A ,  can be 
realized in the contracted and expanded sections of an SSD wave with contracted and 
expanded areas A ,  and A,. 

LEMMA 9. O{A,,  Q,} =k Q{A,, Q,}.fbr all A ,  < A,, Q,, and Q,  ifand only $52 depends 
on A alone. 

COROLLARY. IfsZ depends on A alone, then sZ{A,, Q,} < SZ{A,, Q,} for all A,  < A,, Q,, 
and Q,. 
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Assume 52{A,, Q,} + Q{A,, Q,}  for all A ,  < A,, Q,, and Q2. Since A ,  and A ,  are 
interchangeable. Q{A,,  Q2}  ?= a{A,, Q,} for all A ,  + A, ,  Q,, and Q,. Thus, all points 
(A,  Q) on the locus of points that satisfy 52 = constant share the same value of A .  
It follows that each value of L? is associated with a single value of A ;  52 depends 
only on A .  

Conversely, assume 52 depends on A alone. Since 52 is a strictly decreasing function 
of A (Lemma 6), if A ,  < A,, then 52{A2) < 52{A,). 

LEMMA 18. f-’{;ry}/y depends on r alone ifand only i f f  { K }  = p ~ ,  where ,u is a constant. 

Assume that f -l{$ry}/y = F{r}. It follows after some manipulation that the apparent 
viscosity is given by 

where K = yF{u}. Equation (A 13) implies that the apparent viscosity must be constant. 
Conversely, assume f { K )  = p ~ .  Then f - ’ {$y} /y  reduces to r/(2p), which, for a given 

fluid, is clearly a function of r alone. 
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